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1 INTRODUCTION

inancial markets are complex. Classical economics 
have been under serious challenge (e.g. see [10], [12]) 
to explain price action and volume flows in financial 

markets. One novel approach to market studies is to 
model the micro-behaviour of markets [12], [13]. The at-
tempt is to observe micro-behaviour in the market with 
the aim to discover general dynamics [1], [6]. This ap-
proach is data-driven. Unlike classical economics, it does 
not depend on stringent assumptions, such as perfect ra-
tionality by the traders [14]. This new approach is still in 
its infancy. This paper looks at simple market models, 
and attempts to define the market dynamics formally.  

The market can be described by states. The state of the 
market can be changed by events. In this paper, we limit 
our attention to buy and sell events initiated by market 
participants. Even though behaviour of the market partic-
ipants may in general be unpredictable, certain inferences 
can be made. Given a set of buy and sell orders, the calcu-
lus can define state transitions. We can draw analogy 
with weather forecast, where although we may not know 
the long term weather changes, we can predict the imme-
diate future given the current state; e.g. air flows from 
high pressure to low pressure regions. 

Event calculus is useful for reasoning [4], [7], [8].  Sha-
nahan states: “The event calculus is a logical mechanism that 
infers what’s true when given what happens when and what 
actions do” [10] . This paper formalises the components 
relevant to the calculus for market transitions. It high-
lights the fact that the consequences of an order can be 
complex: the consequences are dependent on the posi-
tions and margins held by market participants. With this 

analysis, one can determine, for example, sizes of orders 
which can cause market crashes. 

This paper formalises the obvious. But it is better to 
state the obvious with mathematical rigor rather than to 
leave it for potential ambiguity, which needs to be ad-
dressed repeatedly later in our research. Besides, what is 
obvious to some may not be obvious to others. Stating the 
obvious through event calculus enables us to study mi-
cro-behaviour rigorously. 

2 MARKET MODELS 
2.1 Model 1 
This model is defined under a double auction market. 

 
State + Orders  State 

 Where:  
State = Queue_Profile = (Bid_Queue, Offer_Queue) 
Bid_Queue = ((order1, price1, volume1), (order2, price2, volume2), ,  

             (ordern, pricebq, volumebq)) 
Where price1 > price2 > … pricebq 

Offer_Queue = ((order1, price1, volume1), (order2, price2, volume2),    
                           …, (ordern, priceoq, volumeoq)) 
Where price1 < price2 < … priceoq 

 
The Bid_Queue comprises the bids to buy. The Of-
fer_Queue comprises offers to sell. Buy (sell) orders hav-
ing the same price are not merged.  

Orders refer to a sequence of orders, where each order 
is either a bid or an offer, together with its volume. 

 
Orders = (Order1, Order2, …, Ordern) 

 
We assume that the orders are processed in sequence: 

 
State + (Order1, Order2, …, Ordern)   

(State + Order1) + (Order2, …, Ordern) 
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For simplicity, we assume only two types of orders. A 
market order is to buy or sell at the market price. A limit 
order is to buy a certain volume up to a price specified, or 
to sell a certain volume above a price specified. For no-
tional convenience, we write a market buy order as a limit 
buy order with the price set at infinity; a market sell order 
sets its price to minus infinity. 
 

Order = (Order_No, Order_Type, Price, Volume) 
Order_Type  = bid | offer 
Order_No = Oi 

 
We define a symbol Inf, which stands for both infinity 
and minus infinity. We write a market buy order as (buy, 
Inf, Volume), a market sell order as (sell, Inf, Volume).  
 
The calculus for clearance of a limit sell order can be de-
fined below.  
 
Let  Bid_Queue1 = ((O1, P1, V1), (O2, P2, V2) …)  

Offer_Queue1 = ((O3, P3, V3), (O4 ,P4, V4), …) 
        Limit_Order = (On, sell, Pn, Vn). 
 
The calculus for a limit order is very simple. If the price of 
the sell order is less than or equal to at least the bid order 
at the head of the bid queue, the limit order can be fully 
or partially fulfilled. The sell order of volume Vn removes 
from the head of the Bid_Queue (P1, V1) the minimum of 
Vn or V1. If Vn is greater than V1, then the head of the 
Bid_Queue is removed. If the limit price is reached, clear-
ing stops and the remaining unfulfilled sell order joins 
the offer queue. If the limit price is not yet reached, clear-
ing continues with the remaining Bid_Queue until V is 
reduced to 0. If the price of the limit sell order is larger 
than the first bid order in the bid queue, then the sell limit 
order joins the offer queue. This can be formalised as fol-
lows. 
 

((O1, P1, V1), (O2, P2, V2),…)+ (On, sell, Pn, Vn)    
((O3, P3, V3), (O4 ,P4, V4), …) (On, sell, Pn, Vn)         if P1 < Pn 
((O1, P1, V1 (min(V1, Vn)), (O2, P2, V2), …) +              if P1 ≥ Pn    

(On, sell, Pn, Vn (min(V1, Vn)))  
 
The + operation is recursive when P1≥Pn; it stops when 
P1<Pn or Vn is reduced to 0. Here  is the queue joining 
operator which simply put the orders in ascending order 
according to their prices.1  
 
Cleared orders are removed from the bid queue: 

((O1, P1, 0), (O2, P2, V2),…)  ((O2, P2, V2), …) 
 
Limit buy orders are handled symmetrically. 
In the calculus above, the clearing of a market order is 
exactly the same as the limit order, except that market 
 

1 In functional programming convention,  is defined below:  
((P1, V1), (P2, V2), …)  (sell, P, V)   

((P, V), (P1, V1), (P2, V2), …) if P < P1 
((P1, V1), ((P2, V2), …)  (sell, P, V))) if P ≥ P1 

 
 

orders do not have limit prices and hence are always 
completely fulfilled. They do not join the bid or offer 
queues. 
 
2.2 Example 1 for Model 1 

With Model 1, the calculus for computing state transition 
is straight-forward. This example shows the state change 
for a given market order. 

State 1.1 = (Bid_Queue1.1, Offer_Queue1.1) 
Bid_Queue1.1 = ((O1, 1.60, 2500), (O2, 1.59, 2000), 

(O3, 1.58, 2500), (O4, 1.57, 1500), 
(O5, 1.56, 4000)) 

Offer_Queue1.1 = ((O6, 1.61, 3000), (O7, 1.62, 2000), 
   (O8, 1.63, 1500)) 

 
Let  Order1.1 = (Order9, Order10, Order11), where  

Order9 = (O9, sell, Inf, 5000) 
Order10 = (O10, buy, 1.57, 1000) 
Order11 = (O11, buy, 1.62, 6000) 

 
With Order9, which is a market order, the following 
transactions ensue: 

2500 will be transacted at 1.60  
 
This will result in the Bid_queue being reduced to: 

(O2, 1.59, 2000), (O3, 1.58, 2500), (O4, 1.57, 1500),  
(O5, 1.56,    4000)) 

Next, the following two transactions will take place: 
2000 will be transacted at 1.59 
500 will be transacted at 1.58 

 
The resulting state is: 

State 1.2 = (Bid_Queue1.2, Offer_Queue1.2) 
Bid_Queue1.2 = ((O3, 1.58, 2000), (O4, 1.57, 1500),  

(O5, 1.56, 4000)) 
Offer_Queue1.2 = Offer_Queue1.1 

 
With Limit_Order10, the offer queue is not changed as the 
price of the buy limit order is less than the price of the 
head of the offer queue. Since Limit_Order10 is not 
matched; it is added to the bid queue.  
 
The resulting state is: 

State 1.3 = (Bid_Queue1.3, Offer_Queue1.3) 
Bid_Queue1.3 = ((O3, 1.58, 2000), (O4, 1.57, 1500),  

(O10, 1.57, 1000), (O5, 1.56, 4000)) 
Offer_Queue1.3 = Offer_Queue1.2 

 
With Limit_Order11 (to buy 6000 with limit price 1.62), the 
offer queue is changed. Since the price 1.62 is greater than 
or equal to the first two orders in the offer queue, the fol-
lowing transactions will take place: 

3000 will be transacted at 1.61 
2000 will be transacted at 1.62 

 
The remaining 1000 units will join the bid queue. There-
fore, the resulting state is: 

State 1.4 = (Bid_Queue1.4, Offer_Queue1.4) 
Bid_Queue1.4 = ((O11, 1.62, 1000), (O3, 1.58, 2000),  
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(O4, 1.57, 1500), (O10, 1.57, 1000), 
(O5, 1.56, 4000)) 

      Offer_Queue1.4 = ((O8, 1.63, 1500)) 
 
 
 

 

2.4 Model 2: When Positions and Margins are 
considered 

The market dynamics will change when traders trade 
with margins. A trader with margin m, where 0<m≤1, 
will pay up only proportion m of the value that it trades. 
We make the following assumptions in our analysis: 
Assumption 2.1. For a trader with a short (long) position with 

margin m, its position is closed automatically when 
the price rises (falls) by more than m. 

Assumption 2.2. All consequences of an automatic position 
closure take place before any new event occurs. 

Assumption 2.32. We assume that a position cannot be ad-
justed and is only only opened by a market or limit 
order. Position closure takes place automatically 
through margin calls. The relaxation of this assump-
tion does not affect the generality of the results shown 
in our paper.  

Under this model, the description of a state must include 
traders’ position profiles: 
 

State = (Queue_Profile, Position_Profile) 
Where: 

Queue_Profile = (Bid_Queue, Offer_Queue) 
Position_Profile = {Position | Position = (Position_Code, Posi-
tion_Type, Volume, Value, Price, Margin)} 
Position_No= P(Oi), where Oi is the Order_No of the order open-
ing the position, given Assumption 2.3 
Position_Type = long | short 
Value = the value of the order(s) against which the opening posi-
tion order has been matched.  
Given:  
 Bid_Queue = ((O1, P1, V1), (O2, P2, V2), .., (On-1, Pn-1, Vn-1)) 

Order= (On, sell, Inf, Vn) 
P(On)Value = (P1* min(V1,Vn)) +  

     (P2* min(V2, (Vn-min(Vn,V2)))+...+ 
     (Pn-1* min(Vn-1,Vn-min(….)))     

Price= Unit Price= Value/Volume 
 
The clearance calculus is exactly the same as in Model 1, 
except that new events, namely new orders, can be trig-
gered by state transitions.  

Let TP = the last transaction price. Here, for simplicity, 
we assume that the last transaction price in “common 
sense”. A more rigorous formalism should have it in-
cluded in the state description. The martin-triggered set 
of new orders is NO: 
 

NO = {(Oi, buy, Inf, V) | (P(Oi), short, Vol, Val P, m)  Posi-
 

2 In a real market, a position is constructed via a set of orders. It can be 
openend, adjusted and closed by market and limit orders. Position clo-
sure takes place as a result of either a margin call or the trader’s decision. 

tion_Profile such that P× (1+m) < TP}  {(Oi, sell, Inf, V) | 
(P(Oi), long, Vol, Val P, m)  Position_Profile such that P× 
(1m) > TP}   

Orders = Orders + NO 
Here we make no assumption on how the set of new or-
ders (NO) join the Orders queue; i.e. the “+” operator is 
yet to be defined. This is left to future refinement of the 
model.  

2.5 Example 2 for Model 2: The effect of margin 
constraints 

The following example shows the state transitions and 
how new events (which are limited to market orders in 
this model) are triggered.  
Let: 

State 2.1 = ((Bid_Queue2.1, Offer_Queue2.1), Positions2.1) 
Bid_Queue2.1 = ((O4, 1.60, 2500), (O5, 1.59, 2000),  

 (O6, 1.58,  2500), (O7, 1.57, 1500),  
 (O8, 1.56, 4000)) 

Offer_Queue2.1= ((O9, 1.61, 3000), (O10, 1.62, 2000), 
  (O11, 1.63, 1500)) 

Positions2.1 = ((P(O1), long, 4000, 6600, 1.65 4%),  
                (P(O2), long, 2000, 3280, 1.64, 4%), 

                                (P(O3), long, 2000, 3280, 1.64, 5%)) 
 
For illustration purposes let us assume the following: 
1. The position profile (Positions2.1) represents the cur-
rent positions in the market created from previos orders. 
2.  Any new position in the market has a margin of 4% 
3. Only one market order in the queue: 

Order 2.1 = ((O12, sell, Inf, 5000)) 
 
This is the same order that we used in Example 1. When it 
is cleared, as explained above, the bid queue will be 
changed. The state will be changed to: 

State 2.2 = (Bid_Queue2.2, Offer_Queue2.2, Positions2.2) 
Bid_Queue2.2 = ((O6, 1.58, 2000), (O7, 1.57, 1500),  

 (O8, 1.56,   4000)) 
Offer_Quene2.2 = Offer_Queue2.1 
Positions2.2 = ((P(O1), long, 4000, 6600, 1.65 4%), 

        (P(O2), long, 2000, 3280, 1.64, 4%), 
        (P(O3), long, 2000, 3280,1.64, 5%), 
        (P(O4), long, 2500, 4000, 1.60, 4%),  

                                (P(O5), long, 2000, 3180, 1.59, 4%), 
                                (P(O6), long, 500, 790, 1.58, 4%), 
                                (P(O12), short, 5000, 7970, 1.594, 4%)) 
Where: 

 P(O12) Value  = (1.6*2500)+(1.59*2000)+(1.58*500)= 7970 
      LastTP = 1.58 (the price of the last matched order in the   
                       Queue_Profile)  
                     
At this point, the bid queue and the position (long, 1.65, 
4000, 4%) together will trigger a new market order. This is 
because 1.65×(14%) = 1.584, which is above the last 
transaction price, which was 1.580. Therefore, the margin 
is exceeded, and this position must be closed (Assump-
tion 2.1). That means the order queue will be changed to: 

Order 2.2 = ((O13, sell, Inf, 4000)) 
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The following transactions take place: 
2000 will be transacted at 1.58 
1500 will be transacted at 1.57 
500 will be transacted at 1.56 

 
This will change the state to: 

State 2.3 = ((Bid_Queue2.3, Offer_Queue2.3), Positions2.3) 
Bid_Queue2.3 = ((O8, 1.56, 3500)) 
Offer_Quene2.3 = Offer_Queue2.2 
Positions2.3 = ((P(O2), long, 2000, 3280, 1.64, 4%),  

(P(O3), long, 2000, 3280, 1.64, 5%),  
(P(O4), long, 2500, 4000, 1.60, 4%),  
(P(O5), long, 2000, 3180, 1.59, 4%),  
(P(O6), long, 2500, 3950, 1.58, 4%),  
(P(O12),short, 5000, 7970, 1.594, 4%),  
(P(O7), long, 1500, 2355, 1.57, 4%),  
(P(O8), long, 500, 780, 1.56, 4%))            

Where: 
LastTP = 1.56 

                     
Note that order O6 has opened a new position P(O6) in 
State2.2. However, it was only partially matched. In 
State2.3, O6 is fully matched. Thus, we do not open a new 
position but we update the already opened position 
P(O6). 

The long position (long, 1.64, 2000, 4%) must be closed 
when the last transaction price (1.56 in this case) falls be-
low its margin, which is 1.64×(14%) = 1.574. This means 
the order queue will be updated by the new market order: 

Order 2.3 = (O14 sell, Inf, 2000) 
 
When the order (sell, Inf, 2000) is matched, 2000 will be 
transacted at 1.56. This will reduce the state to: 

State 2.4 = ((Bid_Queue2.4, Offer_Queue2.4), Positions2.4) 
Bid_Queue2.4 = ((O8, 1.56, 1500)) 
Offer_Queue2.4 = Offer_Queue2.3 

      Positions2.4 = ((P(O3), long, 2000, 3280, 1.64, 5%),  
(P(O4), long, 2500, 4000, 1.60, 4%),  
(P(O5), long, 2000, 3180, 1.59, 4%),  
(P(O6), long, 2500, 3950, 1.58, 4%),  
(P(O12),short, 5000, 7970, 1.594, 4%),  
(P(O7), long, 1500, 2355, 1.57, 4%),  
(P(O8), long, 2500, 3900, 1.56, 4%)) 

                                    
Where: 

LastTP = 1.56 
                       

Note that order O8 has opened a new position P(O8) in 
State2.3. However, O8 was only partially matched. In 
State2.4, O8 is fully cleared. Thus, we we update the al-
ready opened position P(O8). 

The position (long, 1.64, 2000, 5%) will only be closed 
when the price ( LastTP) falls below 1.64×(15%) = 1.558. 
To summarize, a single market order of 5000 units led to 
the closure of two positions, which led to a total clearance 
of 11000 units, and a drop of 2.5% (from ≥1.60 to 1.56) in 
the market. It should be useful to compute, given a par-
ticular state of the market, how big an order is needed to 
drop the price by, say, 10%.  

Besides, what would happen if the (long, 1.64, 2000, 

5%) position has a 4% margin, instead of 5%? This will 
mean that this position has to be closed, but only 1500 of 
the 2000 will be bought (by the last bid in the queue); the 
remaining 500 units will not be cleared. The analysis of 
these properties goes beyond the scope of this simple cal-
culus.  

 

3 CONSEQUENTIAL CLOSURE 
One can compute the consequential closure with respect 
to margin constraints. By doing so, one can evaluate the 
final state of any given event. For example, one would be 
able to say that “a market order to sell 6 million will lead 
to a price drop of 4%”. One may also compute the condi-
tion for minimum price changes, e.g.  
“What is the minimum size of a market sell order to lead 
to a price drop of r%?” 

Answering questions like this would help to assess the 
stability of the market and value at risk. It could provide 
early warnings. 

An algorithm as outlined below returns the volume of 
a market sell order that would lead the price to drop to or 
below price Pdrop.  
 
Function MinDrop(Queue_Profile, Position_Profile, Pdrop); 

/* Let Queue_Profile = (Bid_Queue, Offer_Queue) 
Bid_Queue = ((P1, V1), (P2, V2), …, (Pbq, Vbq)) */ 

i ← 1; Volume = 0;  
Repeat 

Queue_Profile’ ← closure(Queue_Profile, Position_Profile, 
(offer, Inf, Volume)); 

/* Let the bid queue for Queue_Profile’ be ((P1’, V1’), …) */ 
If Vi < V1’  
Then {Volume ←  Volume + Vi; i ←  i + 1} 
Else Volume ← Volume + V1’; 

Until P1’ ≤ Pdrop 

Return Volume; 
 
The procedure closure (Queue_Profile, Position_Profile, Order) 
computes the resulting Queue_Profile’ after consequential 
closure is maintained using the calculus shown in the 
Model 2 Section.3  

There exists a minimum k such that, for all the orders 
(Pi, Vi) at the front of the Bid_Queue, Pdrop ≤ Pi and Vo-
lume ≤ V1+V2+...+Vk. in the worst case, Function MinDrop 
has to go through all such (Pi, Vi)s.4 Volume increases 
monotonically in Function MinDrop. Therefore this func-
tion must terminate.  

Let M be the list of positions in the Position_Profile 
which margin calls are above Pdrop. In the worst case, the 
procedure has to go through all of them. So each cycle of 
the Repeat loop will have complexity of |M|.  
 

3 Strictly speaking, the termination condition P1’ ≤ Pdrop should be re-
placed by LTP ≤ Pdrop, where LTP is the Last transaction price which could 
be returned by the closure fuction. This is simplified for clarity.  When the 
head of the queue in Queue_Profile’ is below Pdrop, any market order to sell 
will drop the price below Pdrop.  Therefore, the Volume returned is correct, 
which is our justification for the compromise. 

4 This is an upper-bound because any margin calls that might be trig-
gered will absorb some of the volume. 
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Each “Then” part in each cycle of the Repeat loop 
would increase Volume to include one (Pi, Vi) pair. It is 
more complex to analyse the number of times that the 
“Else” part could be entered. In the worst case, each of the 
positions could bring the loop into the Else part through a 
margin call. Therefore, the complexity of the algorithm is 
bounded by O(k×|M|2). 

 4 MARKET MAKING 
The market maker absorbs a substantial amount of com-
plexity (hence being rewarded). The market maker sets 
the “bid” and “ask” prices. The bid price is the price at 
which the market maker offers to buy; the ask price is the 
price at which the market maker offers to sell. 
 

State = (Bid_price, Ask_price, MaxVol, Queue_Profile, 
     Position_Profile) 

 
Where: 

Bid_price and Ask_price are the bid and ask 
prices quoted by the market maker; 
MaxVol is the maximum volume that the market 
maker is willing to deal per order; 
Queue_Profile and Position_Profile are the same 
as those defined in Model 2. 

 
Here we assume that the clearing mechanism is complete-
ly automated. We define the clearing mechanism below. 
The key to the clearing mechanism is in the way that the 
market maker updates its bid and ask prices. In this pa-
per, we make no assumption on f, which could vary from 
market maker to market maker; f should be a complex 
function. 

Let Bid_price and Ask_price be the bid and ask prices 
in the current state, and Bid_price' and Ask_price' be the 
bid and ask prices in the next state. We generalize that the 
market maker sets the Bid_price' and Ask_price' with a 
function f, without specifying exactly what f is. f is a func-
tion that involves Bid_price, Ask_price, Queue_Profile, 
Position_Profile and many other factors, which may in-
clude the market maker’s own position, bid and ask pric-
es by the other market makers, the balance of payment 
between countries, interest rates, news and other econom-
ic indicators of the countries involved. 

 
(Bid_price, Ask_price, MaxVol, (Bid_Q, Offer_Q), Positions) +  
 (sell, P, V)   
(Bid_price', Ask_price', MaxVol, (Bid_Q, Offer_Q), Positions)   
  if P ≤ Bid_price & V ≤ MaxVol 
(Bid_price', Ask_price', MaxVol, (Bid_Q, Offer_Q), Positions) + 

(sell, P, VMaxVol)  if P ≤ Bid_price & V > MaxVol 
 
(Bid_price', Ask_price', MaxVol, (Bid_Q, Offer_Q(sell, P, V)), Po-

sitions)  if P > Bid_price 
 
The queue joining operator  is defined in the Model 1 
Section. 
If f could be written down mathematically, we would be 
able to define the event calculus in market making. 

 

5 LIQUIDITY 
Artzner et al [3] proposed coherent measures of risk. This 
was challenged by Acerbi & Scandolo [1], [1] for not tak-
ing full consideration of liquidity risk. Acerbi & Scandolo 
introduced the marginal supply-demand curves (MSDCs) 
[1], which defines at any time instance the available prices 
of a given asset in the market. The attractiveness of their 
formalism is that liquidity risk is measured by market 
data; no assumptions are required. MSDCs are basically 
defined by queue profiles as defined above.  Fig. 1 shows 
the MSDC in State 2.1. After clearing of Order 2.1, the 
market loses a certain amount of liquidity. This is shown 
by MSDC in Fig. 2.  

The queue profile defines how liquid an asset is at any 
given time. Liquidity of an asset is therefore determined 
by how steep one ascends or descends in the MSDC. Fol-
lowing the above example, suppose at State 2.1, two trad-
ers bid 1.60 for 500 shares, and 1.59 for another 500 
shares. Although the highest bid price is still 1.60, the 
new MSDC is actually steeper than the one shown in Fig. 
1. This means, to sell over 1000 shares in this market (as 
opposed to the market shown in Fig. 1), the seller must be 
prepared to accept lower bids.  

Unfortunately, the ordinary investors/traders who 
have no access to order books have no means of assessing 
their liquidity risk.5 Therefore, market making provides 
investors/traders with market liquidity up to a certain 
limit (MaxVol in the Market Making Section). It also of-
fers transparency in market liquidity. The MSDC under 
market making is shown in Fig. 3. 

It is worth noting the obvious that, as a Queue Profile 
does not have to be symmetric, an asset could be highly 
liquid when one wants to buy, but illiquid when one 
wants to sell (and vice versa). 

6 CONCLUSION 
In this paper, we have defined a calculus for describing 
state changes in a market as a consequence of new orders 
coming in. We base our analysis on simple market mod-
els. This is no attempt to predict what new orders will 
arrive. The purpose of this paper is to lay the foundation 
for analyzing market states. We show that even with the 
simple calculus defined, we can ask important questions 
such as “how big a sell order would push the price down by 
10%?” This research also supports Acerbi and Scandolo’s 
call to measure liquidity risks with market data.  

We acknowledge the fact that state changes in real 
markets are far more complex than what is described in 
this paper. It is up to the participants, including govern-
ing bodies, market makers and traders, to define the rules 
in an unambiguous mathematical and mechanical way. 
The aim is to create markets with properties that can be 

 
5 OANDA provides information on trader positions [9]. This could help 

conjecturing (with low confidence) marginal supply and demands (be-
cause eventually those in long positions have to sell, and those in short 
positions have to buy).  
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studied scientifically. Eliminating black boxes and enabl-
ing scientific studies may be the best way to ensure stabil-
ity and prevent financial crises. We intend to extend the 

calculus to cover more sophisticated market mechanisms 
and trading strategies.  
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Fig. 2 The Marginal Supply-Demand Curve defined by the Queue Pro-

file at State 2.2 

 

Fig. 1 The Marginal Supply-Demand Curve under market making 

 

Fig. 1. The Marginal Supply-Demand Curve defined by the Queue
Profile at State 2.1 
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